Journal of Organometallic Chemistry, 393 (1990) 213–225 Elsevier Sequoia S.A., Lausanne JOM 20541

Dehydrierung von Phenylarsan und seinen Pentacarbonylchrom-Derivaten: Abfangreaktionen für Diphenyldiarsen, PhAs=AsPh

Ibrahim Jibril *, Lutz-R. Frank, Laszlo Zsolnai, Kaspar Evertz

Lehrstuhl für Synthetische Anorganische Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz (B.R.D.)

und Gottfried Huttner **

Institut für Anorganische Chemie der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg (B.R.D.)

(Eingegangen den 18. September 1989)

Abstract

The compound $(Cr(CO)_5As(C_6H_5)H)_2$, 1, reacts under thermal Pt-catalysis with dienes in Diels-Alder type reactions to give the cycloadducts 2. Whereas the formation of the acrolein adduct 3 suggests a stepwise reaction, the isolation of diarsene-complexes 4 in the system Pd/C / L (L = donor ligand) suggests a synchronous mechanism. As side products in these reactions, oligocyloarsane-complexes $R_n As_n (Cr(CO)_5)_m$ (n = 4, 5; m = 1, 2), 5, are formed.

Zusammenfassung

Die Verbindung (Cr(CO)₅As(C₆H₅)H)₂, 1, reagiert Pt-katalysiert thermisch mit Dienen unter Diels-Alder-Reaktion zu den Cycloaddukten 2. Während die Bildung des Acrolein-Adduktes 3 einen schrittweisen Reaktionsablauf nahelegt, spricht die Isolierung von Diarsen-Komplexen im System Pd/C / L (L = Donorligand) 4 für einen Synchronmechanismus. Als Nebenprodukte dieser Reaktionen entstehen Oligocycloarsan-Komplexe $R_nAs_n(Cr(CO)_5)_m$ (n = 4, 5; m = 1, 2) 5.

Einleitung

Pentacarbonylchromphenylarsan lässt sich thermisch zu sym-Bis-pentacarbonylchrom-diphenyldiarsan dehydrieren [1], das mit Pd/C oder Pt/C kataly-

^{*} Department of Chemistry, Yarmouk University (Irbid, Jordan)

^{**} Korrespondenzautor

tisch weiter dehydriert werden kann [1]. Die Anwendungen dieser Syntheseschritte zum Aufbau von Diarsen-Komplexen und ihren Diels-Alder Addukten sowie für die Darstellung von Oligo-Cycloarsan-Komplexen wird im folgendem beschrieben.

Pentacarbonylchromphenylarsan wandelt sich in Toluollösungen bei 45°C in den symmetrischen Diarsankomplex 1 um [1].

$$Cr(CO)_{5}As(C_{6}H_{5})H_{2} \xrightarrow{\Delta T} (CO)_{5}Cr \xrightarrow{H} \begin{array}{c} C_{6}H_{5} \\ | & | \\ As \xrightarrow{As} Cr(CO)_{5} \\ | & | \\ C_{6}H_{5} \\ H \end{array}$$
(1)

Der Komplex 1 reagiert mit Pt/C in Gegenwart von Dienen zu den Produkten 2, die als Diels-Alder-Addukte eines intermediär durch Dehydrierung entstandenen Diarsen-Komplexes ((CO)₅CrAs(Ph)=(Ph)AsCr(CO)₅) aufgefasst werden können.

Die Verbindungen 2 sind orangegelbe kristalline Festkörper. Ihre Identität ist ausser durch die üblichen spektroskopischen Methoden bis auf Verbindung 2a auch durch die Strukturanalyse belegt. Während die ¹H-NMR-Spektren (Experimenteller Teil) nur belegen können, dass die Verbindungen 2 in isomerenreiner Form anfallen [2a,2b] zeigen die strukturanalytischen Ergebnisse, dass jeweils ausschliesslich die *trans*-Form gebildet wird. Für 2b war dieser Beleg schon erbracht [1], für 2c [3b*] ist das Ergebnis der Strukturanalyse in Fig. 1 dargestellt.

Wenn für den Reaktionsablauf intermediäre Bildung des Diarsen-Komplexes $(CO)_5CrAs(Ph)=(Ph)AsCr(CO)_5$ und dessen nachfolgende Cycloaddition mit dem Dien angenommen wird, belegt die stereochemische Form der Addukte die Bildung des Diarsen-Komplexes in der *E*-Form. Untersuchungen an in freier Form beständigen Komplexen des Typs L_nMXR=RXML_n (X = P, As) [4] zeigen, dass die *E*-Anordnung in aller Regel aus sterischen Gründen stabiler ist als die Z-Form, welche nur unter speziellen Bedingungen als die bei Raumtemperatur thermodynamisch stabilere Form erhalten wird [4]. Untersuchungen an Diarsanen [5], Diphosphan-Komplexen und Distiban-Komplexen [6] belegen, dass in diesen Verbin-

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Fig. 1. Die Struktur von 2c [3b*].

dungen die *meso*-Form jeweils thermodynamisch stabiler ist als das Racemat. Die stereoselektive Bildung des *E*-Diarsen-Komplexes könnte als Folge einer stereoselektiven Dehydrierung des *meso*-Diarsans gedeutet werden. Ebenso denkbar ist allerdings eine Platin-katalysierte Einstellung des thermodynamischen Gleichgewichtes zwischen den *E*- und *Z*-Formen des Diarsen-Komplexes.

Als alternative Hypothese zum Reaktionsablauf lässt sich auch eine schrittweise Insertion des Diens in die As-H-Bindung des Diarsan-Komplexes 1 annehmen, da die Insertion von Olefinen in die As-H-Bindung von $Cr(CO)_5As(C_6H_5)H_2$ nachgewiesen ist [7]. Die Platin-Katalyse, die für die Bildung der Cycloaddukte 2 und 1 notwendig ist würde dann im zweiten Reaktionsschritt die beobachtete Stereochemie zur Folge haben müssen.

Für einen schrittweisen Reaktionsablauf spricht die Beobachtung, dass Acrolein mit 1 in Gegenwart von Pt/C zu 3 reagiert:

Die primäre Insertion der Olefin-Gruppierung in eine As-H-Bindung des Diarsans würde die Aldehyd-Gruppe nahe genug an die zweite As-H-Bindung bringen, um unter Platinkatalyse den Ringschluss zu 3 zuzulassen. Zusammensetzung und Aufbau von 3 sind durch analytische und spektroskopische Daten (Experimenteller Teil) belegt, welche auch zeigen, dass von den vier möglichen Enantiomerenpaaren von 3 nur eines gebildet wird. Die Strukturanalyse von 3 zeigt die

Fig. 2. Die Struktur der Verbindung 3 [3*].

relative Konfiguration der drei chiralen Zentren (Fig. 2) im fünfgliedrigen Ring von 3 [3*].

Wie in den Cycloaddukten 2 sind auch in 3 die Substituenten an den Arsen-Zentren zueinander *trans*-ständig.

Einen Hinweis darauf, dass die im System 1 / Pt/C beobachteten Cycloadditionsreaktionen doch als Synchronreaktion über ein Diarsen-Intermediat $(CO)_5CrAs(Ph)=(Ph)AsCr(CO)_5$ entstehen könnten gibt die Isolierung von Diarsen-Komplexen im System 1 / Pd/C / L (L = Donorligand) [1].

Das komplexgebundene Diphenyldiarsen liegt auch in 4 in seiner *trans*-Form vor [1]. Mit Triphenylphosphin als Stützligand führt die analoge Reaktion zum Mono-Pentacarbonylchrom-Derivat 4c, dessen Bau durch eine Stukturanalyse (Fig. 3) [3*] belegt ist.

Fig. 3. Die Struktur von 4c [3*].

Fig. 4. Die Struktur von 4d [3*].

Fig. 5. Die Strukturen der Verbindungen 5a, 5b und 5c [3*].

Fig. 5. (Fortsetzung).

Die Pentacarbonyl-Chrom freie Stammsubstanz von 4 erhält man bei der Umsetzung von $(C_6H_5)AsH_2$ mit Pd/C in Gegenwart von $P(C_6H_5)_3$ in Form von 4d.

$$(C_{6}H_{5})AsH_{2} \xrightarrow{Pd/C} C_{6}H_{5})_{3}P \qquad P(C_{6}H_{5})_{3}$$

$$(C_{6}H_{5})AsH_{2} \xrightarrow{Pd/C} C_{6}H_{5} \qquad Pd \qquad As \qquad C_{6}H_{5}$$

Auch in 4d ist der Diarsen-Ligand trans konfiguriert (Fig. 4).

Tabelle 1

Wichtigste Bindungsabstände in den Verbindungen 2, 3, 4 und 5

Verbindung	Bindung (pm)		
	As-As	As-Cr	
2b	244.2(2)	246.6(2)-247.5(3)	
2c	245.9(3)	247.0(2)	
3	244.9(4)	246.9(4)-247.7(4)	
4a	236.6(2)	249.8(3)-252.3(2)	
4b	235.9(6)	250(1)-245(1)	
4c	235.1(3)	252.9(4)	
4d	232.2(3)	_	
5a	242.1(2)-245.8(3)	248.4(3)-249.5(3)	
5b	242.9(3)-247.6(3)	248.2(4)	
5c	245.0(5)-246.6(2)	249.0(5)	

Als Nebenprodukte der Synthese von 2a-4c entstehen stets Oligocycloarsan-Komplexe [8]; bei der Darstellung von 4d bilden sich entsprechend Oligocycloarsane.

Die Abtrennung der Oligocycloarsan-Komplexe gelang in einzelnen Fällen (Experimenteller Teil).

$$\begin{array}{ccc} (C_{6}H_{5})_{5}As_{5}(Cr(CO)_{5})_{2} & (C_{6}H_{5})_{5}As_{5}Cr(CO)_{5} & (C_{6}H_{5})_{4}As_{4}Cr(CO)_{5} \\ (5a) & (5b) & (5c) \end{array}$$

Verbindungen der Form 5 entstehen auch bei der Dehydrierung von 1 mit Pt/C ohne Zusatz eines "Abfangreagenz". Der Bau der Verbindungen 5 wurde durch Strukturanalysen gesichert (Fig. 5 [3*]).

Das Auftreten dieser Nebenprodukte erschwert die präparative Nutzung der hier beschriebenen Cycloadditionsreaktionen. Dass die Reaktionsbedingungen in Richtung auf die Bildung von Cycloaddukten hin optimiert werden können zeigt die Tatsache, dass für das Diels-Alder-Addukt **2b** eine Ausbeute von 60% erreicht werden konnte. Die strenge Stereoselektivität dieser Additionsreaktionen sollte sich für die stereoselektive Synthese von Chelatliganden nutzen lassen.

Experimenteller Teil

Sämtliche Arbeiten wurden unter N₂ als Schutzgas mit frisch destillierten und absolutierten Lösungsmitteln durchgeführt. Das zur Chromatographie benützte Kieselgel (Korngrösse 0.06–0.2 mm der Fa. Merck) wurde bei Raumtemperatur im Hochvakuum (10^{-2} mbar) entgast und mit N₂ beladen. Massenspektren: Varian MAT-112S/312 (Direkteinlass-System; Datensystem SS 200); IR-Spektren: Zeiss IMR 40, CaF₂-Küvetten (w = schwach, m = mittel, s = stark, vs = sehr stark, vw = sehr schwach, sh = Schulter, b = breit); ¹H-NMR-Spektren: Bruker WP-80 FT und HX-90 FT (Standard: intern durch Lösungsmittel; Aceton-d₆ 2.04 ppm, CDCl₃ 7.24 ppm rel. TMS; s = Singulett, m = Multiplett).

Darstellung der Verbindung 1

3 g (8.7 mmol) Cr(CO)₅AsPhH₂ [9] werden in 50 ml Toluol gelöst und 12 h im 45°C warmen Wasserbad gerührt. Unter Gasentwicklung schlägt dabei die Farbe der Reaktionslösung von hellgelb nach orange um. Nach Zugabe von 5 g Kieselgel wird das Lösungsmittel am Hochvakuum entfernt und der Rückstand bis zur Rieselfähigkeit getrocknet. Chromatographie über eine Kieselgelsäule (30 × 1.5 cm, -25°C) ergib mit n-Pentan/CH₂Cl₂ 10/1 bis 10/2 eine orangegelbe Zone, aus der durch Umkristallisation aus n-Pentan/Toluol 3/1 bei -40°C die Verbindung 1 analysenrein erhalten wird. Ausb. 1.2 g, 40% (bez. auf eingesetzten Arsankomplex). Schmp. 97-99°C (Zers.). Gef.: C, 38.31; H, 1.48. C₂₂H₁₂O₁₀As₂Cr₂ (690.15) Ber.: C, 38.26; H, 1.74%. IR (CH₂Cl₂): 2071m, 2061s, 1985sh, 1950vs/b. ¹H-NMR (Aceton-d₆): 7.2-7.8 (m, 10H); 5.5 (s, 2H). MS (m/e (I_r)): [M⁺] 690(16), [M⁺-CO] 662(1), [M⁺-10CO] 410(6), [CrAs₂Ph₂H₂⁺] 358(88), [Ph₂As₂H₂⁺] 306(12), [PhAs₂⁺] 227(156), [PhAs⁺] 152(100).

Darstellung der Verbindungen 2

3.45 g (5 mmol) (Cr(CO)₅PhAsH)₂, 1, werden in 50 ml CH₂Cl₂ gelöst und mit einer äquimolaren Menge Platin/Aktivkohle-10% (9.75 g (5 mmol)) versetzt. Nach

Verbindung	Dien (g (mmol))	Ausbeute ^a (g (%))	Schmp. ^b (°C)	Summenformel (Molmasse)	Analyse (gef. (ber.) (%)
					C	Н
2a	C ₅ H ₈ 0,5 (6.0)	0.8 (18)	140 (Zers.)	C ₂₇ H ₁₈ As ₂ Cr ₂ O ₁₀ (756.25)	41.95 (42.88)	2.33 (2.40)
2b	C ₆ H ₁₀ 0.49 (6.0)	2.8 (61)	142 (Zers.)	C ₂₈ H ₂₀ As ₂ Cr ₂ O ₁₀ (770.29)	43.37 (43.66)	2.55 (2.62)
2c	C5H6 0.39 (6.0)	1.6 (35)	127 (Zers.)	$C_{27}H_{16}As_2Cr_2O_{10}$ (754.23)	42.89 (42.99)	2.29 (2.14)

 Tabelle 2

 Darstellung und analytische Daten der Verbindungen 2

^a Bezogen auf eingesetztes Dien. ^b Unkorrigierter Wert.

Zugabe des jeweiligen Dienbausteines (Art und Menge vgl. Tab. 2)) wird 12 h bei 25°C gerührt. Man beobachtet eine deutliche Gasentwicklung. Nach Filtration über 5 cm Kieselgel wird das Lösungsmittel am Hochvakuum entfernt. Der Rückstand wird bis zur Rieselfähigkeit getrocknet. Anschliessend wird über eine Kieselgelsäule $(30 \times 1.5 \text{ cm}, -25^{\circ}\text{C})$ chromatographiert. Mit n-Pentan/CH₂Cl₂ 5/1 eluiert man eine orangegelbe Zone, aus der man durch Umkristallisation aus n-Pentan/CH₂Cl₂ 10/1 das gewünschte Produkt, 2, analysenrein erhält. Analytische Daten sind in Tab. 2 zusammengefasst. Die spektroskopischen Eigenschaften der Verbindungen 2 sind in Tab. 3 zusammengestellt.

Darstellung der Verbindung 3

Tabelle 3

Zu einer Lösung von 1.11 g (1.6 mmol) $(Cr(CO)_5 PhAsH)_2$, 1, in 50 ml CH_2Cl_2 werden 0.9 g (1.6 mmol) Acrolein gegeben. Nach Zugabe von 80 mg (0.04 mmol) Platin/Aktivkohle-10% wird 24 h bei 25°C im Wasserbad gerührt. Es lässt sich eine deutliche Gasentwicklung beobachten. Die Reaktionslösung wird über 5 cm Kieselgel

Verbindung	$IR (cm^{-1})$	¹ H-NMR	MS
-	(v (CO))	(δ (ppm))	$(m/e(\mathbf{I}_r))$
2a	2070w, 1980sh	7.2-7.8 (m,10H)	$[M^+]$ 756(1), $[M^+ - 10CO]$ 476(8),
	1962vs, 1947vs/b ^a	5.1 (s/b,1H)	$[Ph_2As_2^+]$ 304(25),
		2.8-3.3 (m,4H)	$[PhAs_{2}^{+}]$ 227(8),
		2.1 (s,3H) ^b	[PhAs ⁺] 152(100).
2b	2065w, 2058s,	7.5-7.6 (m,10H)	$[M^+]$ 770(1), $[M^+ - 8CO]$ 546(1),
	1983w, 1944vs/b "	4.9 (m,4H)	$[M^+ - 9CO] 518(1), [M^+ - 10CO]490(9),$
		2.1 (s,6H) ^c	$[Ph_2As_2^+]$ 304(36), $[PhAs_2^+]$
			227(90), [PhAs ⁺] 152(100).
2c	2067w, 2059s,	7.2-7.7 (m,10H)	$[M^+]$ 754(1), $[M^+ - 5CO]$ 614(2),
	1980sh, 1940vs/b	6.6 (m,2H)	$[M^+ - 10CO] 474(1), [CrPh_2As_2^+]$
		4.8 (m,2H)	357(12), [Ph ₂ As ₂ ⁺] 304(30),
		1.8 (m,2H) ^c	[PhAs ₂ ⁺] 227(80), [PhAs ⁺]
			$152(100), [C_5H_5^+] 65(100).$

IR-, ¹H-NMR- und MS-Daten der Verbindungen 2

filtriert, das Filtrat mit 5 g Kieselgel versetzt und das Lösungsmittel am Hochvakuum entfernt. Nach Trocknung des Rückstandes bis zur Rieselfähigkeit wird über eine Kieselgelsäule $(30 \times 1.5 \text{ cm}, -25^{\circ}\text{C})$ chromatographiert. Mit n-Pentan/CH₂Cl₂ 3/1 eluiert man eine gelbe Zone, aus der nach Umkristallisation aus n-Pentan/Toluol 5/1 die Verbindung 3 in Form gelber Kristalle erhalten wird. Ausb. 0.3 g, 25% (bez. auf Acrolein). Schmp. 138°C (Zers.). Gef.: C, 40.17; H, 2.16. C₂₅H₁₆As₂Cr₂O₁₁ (746.23) Ber.: C, 40.24; H, 2.16%. IR (CH₂Cl₂): 2068m, 2059s, 1985sh, 1950vs/b. ¹H-NMR (CDCl₃): 6.7-7.8 (m,10H); 5.8 (s/b,1H); 2.3-3.4 (m,5H). MS (*m*/e (I_r)): [*M*⁺] 746(6), [*M*⁺ - 5CO] 606(3), [*M*⁺ - 10CO] 466(4), [Ph₂As₂⁺] 304(8), [PhAs₂⁺] 227(49), [PhAs⁺] 152(100).

Darstellung der Verbindungen 4

(a) Darstellung der Verbindungen 4a-4c. Zu einer Lösung von $(Cr(CO)_5PhAs-H)_2$, 1, in 100 ml CH_2Cl_2 wird ein zweifach molarer Überschuss an Ligand (Art und Menge vgl. Tab. 4)) gegeben. Nach Zusatz von einem Äquivalent Palladium/Aktivkohle-10% wird die Reaktionslösung 20 h bei 25°C gerührt. Nach Filtration über 3 cm Kieselgel, Zugabe von 5 g Kieselgel und Trocknung des Filtrates bis zur Rieselfähigkeit am Hochvakuum wird über eine Kieselgelsäule (25 × 1.5 cm, -25°C) chromatographiert. Mit n-Pentan/CH₂Cl₂ 3/1 eluiert man eine orangerote Zone. Nach Abziehen des Lösungsmittels und Umkristallisation mit n-Pentan/ Toluol 5/1 erhält man die Verbindungen 4 in Form roter Kristalle. Analytische und spektroskopische Daten sind in den Tabellen 4 und 5) zusammengestellt.

(b) Darstellung der Verbindung 4d. 3.85 g PhAsH₂ (25 mmol) werden in 75 ml CH₂Cl₂ gelöst und mit 25 g Palladium/Aktivkohle-10% (25 mmol) und 7 g P(Ph)₃ (25 mmol) versetzt. Nach 5 h Rühren bei 30-35°C im Wasserbad wird noch 10 h bei 25°C gerührt. Nach Filtration über 15 cm Kieselgel und Waschen mit THF werden die vereinigten Filtrate mit 10 g Kieselgel versetzt. Anschliessend werden die Lösungsmittel am Hockvakuum entfernt und der Rückstand mit 5 g Kieselgel bis zur Rieselfähigkeit getrocknet. Chromatographie über eine Kieselgelsäule (30×1.5 cm, -25°C) ergibt mit n-Pentan/CH₂Cl₂ 1/1 eine hellgelbe Zone, aus der nach

Verbin- dung	L (g mmol))	Ausbeute ^a (g (%))	Schmp. ^b (°C)	Summenformel (Molmasse)	Analyse (%) (gef. (ber.)) (%)	
					c	н
4a	P(OMe) ₃ 0.27 (2.15)	1.0 (90)	118 (Zers.)	$\begin{array}{c} C_{28}H_{28}O_{16}P_2As_2Cr_2Pd\\ (1042) \end{array}$	32.49 (32.25)	2.68 (2.69)
4b	2.2'-Bipyridyl 0.3 (0.19)	0.09 (46)	126 (Zers.)	$\begin{array}{c} C_{32}H_{18}O_{10}N_2As_2Cr_2Pd\\ (950) \end{array}$	40.02 (40.42)	2.04 (1.90)
4 c	P(Ph) ₃ 0.44 (1.68)	0.25 (22)	125 (Zers.)	C ₅₃ H ₄₀ O ₅ P ₂ As ₂ CrPd (1126)	56.40 (56.48)	3.39 (3.55)
4 d	P(Ph) ₃ 7.0 (25)	1.48 (6)	80-82 (Zers.)	C ₄₈ H ₄₀ P ₂ As ₂ Pd (934)	62.23 (61.67)	4.44 (4.28)

Darstellung und analytische Daten der Verbindungen 4

Tabelle 4

^a bezogen auf eingesetzten Liganden. ^b unkorrigierter Wert.

Verbin-	$IR(cm^{-1})$	¹ H-NMR	MS
dung	(v(CO))	δ (ppm))	$(m/e(I_r))$
4 a	2060m, 2053s,	7.3–7.8 (m,10H)	$[CrAs_2Ph_2^+]$ 357(8), $[Ph_2As_2^+]$ 304(15),
	1983m, 1944vs/b ^a	3.8 (t,18H J(PH) 6 Hz) b	[PhAs ₂ ⁺] 227(70), [PhAs ⁺] 152 (100).
4b	2060m, 2052s,	7.2–9.14 (m) ^b	$[Cr_2As_2Ph_2^+]$ 410(1), $[CrAs_2Ph_2^+]$
	1984w, 1941vs ^a		357(5), [Ph ₂ As ₂ ⁺] $304(20)$, [PhAs ₂ ⁺]
			227(85), [PhAs ⁺] 152(100).
4c	2060w, 2052s,	6.9–7.5 (m) ^b	$[Cr_2As_2Ph_2^+]$ 410(1), $[CrAs_2Ph_2^+]$
	1980w, 1930vs ^a		357(5), [Ph ₂ As ₂ ⁺] $304(25)$, [PhAs ₂ ⁺]
			227(75), [PhAs ⁺] 152(100).
4d	_	6.8–7.6 (m) ^c	$[(PhAsAsPh) PdP(Ph)_{3}^{+}] 672(4),$
			$[Cr_2As_2Ph_2^+]$ 410(25), $[Ph_2As_2^+]$
			304(100), [PhAs ⁺] 152(50),
			[Pd ⁺] 106(24).

Tabelle 5 IR⁻, ¹H-NMR und MS-Daten der Verbindungen 4

^a CH₂Cl₂. ^b Aceton-d₆. ^c CDCl₃.

Tabelle 6

Darstellung und analytische Daten der Verbindungen 5

Verbindung	Ausbeute ^a (g(%))	Schmp. ^b (°C)	Summenformel (Molmasse)	Analyse (gef. (ber.)) (%)	
				c	н
5a	0.09 (26)	160 (Zers.)	C ₄₀ H ₂₅ O ₁₀ As ₅ Cr ₂ (1144)	42.07 (41.96)	2.02 (2.19)
5b	0.06 (19)	156 (Zers.)	C ₃₅ H ₂₅ O ₅ As ₅ Cr (952)	43.85 (44.12)	2.28 (2.63)
5c	0.006 (2)	122 (Zers.)	C ₂₉ H ₂₀ O ₅ As ₄ Cr (800)	43.60 (43.50)	2.54 (2.50)

^a Bezogen auf eingesetzten Diarsankomplex. ^b Unkorrigierter Wert.

Tabelle 7

IR-, ¹H-NMR- und MS-Daten der Verbindungen 5

Verbindung	$IR (cm^{-1}) (\nu(CO))$	¹ H-NMR (δ (ppm))	MS (m/e (I,))
5a	2059s, 1987sh, 1946vs/b "	7.1–7.8 ^b	$ \begin{bmatrix} Cr_2(PhAs)_5^+ & 864(1), [Cr(PhAs)_5^+ & 812(1), \\ [(PhAs)_5^+ & 760(1), [(PhAs)_4^+ &] 608(1), \\ [(PhAs)_3^+ & 456(6), [(PhAs)_2 &] 304(6), \\ [PhAs_2^+ &] 227(100), [PhAs^+ &] 152(73). \end{bmatrix} $
5b	2059vs, 1983s, 1944vs/b <i>ª</i>	7.2–8.0 ^{<i>b</i>}	$[Cr(PhAs)_{5}^{+}]$ 812(1), $[(PhAs)_{5}^{+}]$ 760(1), $[(AAs)_{4}^{+}]$ 608(1), $[(PhAs)_{3}^{+}]$ 456(65), $[(PhAs)_{2}^{+}]$ 304(70), $[PhAs_{2}^{+}]$ 227(100), $[PhAs^{+}]$ 152(84).
5c	20 6 0s, 1984s, 1938vs/b <i>ª</i>	7.3–8.2 ^{<i>b</i>}	$[M^+]$ 800(1), $[M^+ - CO]$ 772(1), $[M^+ - 2CO]$ 744(1), $[M^+ - 3CO]$ 716(1), $[M^+ - 4CO]$ 688(1), $[Cr(AsPh)_4^+]$ 660(1), $[(PhAs)_4^+]$ 608(1), $[(PhAs)_3^+]$ 456(8), $[(PhAs)_2^+]$ 304(18), $[PhAs_2^+]$ 227(49), $[PhAs^+]$ 152(100).

Umkristallisation aus n-Pentan/ CH_2Cl_2 5/1 die Verbindung 4d in Form kleiner gelber Kristalle anfällt. Analytische und spektroskopische Daten sind in den Tabellen 4 und 5 zusammengestellt.

Darstellung der Verbindungen 5

Bei der Darstellung der Verbindungen 4a-4c erhält man während der chromatographischen Aufarbeitung der Reaktionslösungen mit n-Pentan/Toluol 5/1 gelbe Zonen, aus denen nach Abziehen der Lösungsmittel und Umkristallisation aus n-Pentan/CH₂Cl₂ 5/1 die Verbindungen 5 isoliert werden können. Analytische und spektroskopische Daten sind in den Tabellen 6 und 7 zusammengefasst.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie für die gewährte finanzielle Unterstützung. Für die Aufnahme von Massenspektren sind wir Hr. Dr. K. Knoll und Hr. B. Pilz dankbar. Fr. M. Glas danken wir für die Durchführung der Elementaranalysen.

Literatur

- 1 G. Huttner und I. Jibril, Angew. Chem., 96 (1984) 154; Angew. Chem. Int. Ed. Engl., 23 (1984) 740.
- 2 (a) H. Günther, NMR-Spektroskopie, Thieme Verlag, 1986. (b) G. Huttner, J. Borm, O. Orama und L. Zsolnai, J. Organomet. Chem., 282 (1985) 53. (c) G. Huttner, J. Borm und L. Zsolnai, J. Organomet. Chem., 304 (1986) 309.
- 3 (a) Weitere Einzelheiten zu den Kristallstrukturanalysen können beim Fachinformationszentrum Energie Physik Mathematik; D-7514 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD 54121, der Autoren und des Zeitschriftenzitates angefordert werden. Messbedingungen: Syntex P3-Diffraktometer, Mo- K_{α} , λ_1 71.069 pm, Graphitmonochromator, ω -scan, $\Delta \omega 1^\circ$, $1.8 < \dot{\omega} < 29.3^\circ \text{min}^{-1}$; $2^\circ < 2\theta < 43^\circ$. Strukturlösung SHELXTL (G.M. Sheldrick, Göttingen, Revision 1984). 3: C₂₅H₁₆As₂Cr₂O₁₁, Molmasse 746, Raumgruppe $P_{2_1/c}$ (14), a 1204(1), b 1526(1), c 2070(3) pm; β 132.13(4)°, V 2819(1) × 10⁶ pm³, Z = 4; d_{ber} 1.76 g cm⁻³, μ (Mo- K_{α}) 33.2 cm⁻¹, T 233 K, 3063 unabhängige Reflexe ($I > 2\sigma$), $R_1 = 0.074$, $R_2 = 0.085$.

4c: $C_{53}H_{40}As_2P_2PdCrO_5$, Molmasse 1126, Raumgruppe $P2_12_12_1$, a 1284(2), b 1790(2), c 2126(3) pm; V 4886×10⁶ pm³, Z = 4, d_{ber} 1.53 g cm⁻³, μ (Mo- K_{σ}) 21.3 cm⁻¹, T 218 K, 2670 unabhängige Reflexe ($I > 2\sigma$), $R_1 = 0.061$, $R_2 = 0.064$.

4d: $C_{48}H_{40}As_2P_2Pd$, Molmasse 934, Raumgruppe $P2_1/c$ (14), *a* 1415.8(9), *b* 1283.7(9), *c* 2179(9) pm, β 98.32(7), *V* 3919.64×10⁶ pm³, *Z* = 4; *d*_{ber} 1.76 g cm⁻³, μ (Mo- K_{α}) 27.9 cm⁻¹, *T* 243 K, 3201 unabhängige Reflexe ($I > 2\sigma$), $R_1 = 0.064$, $R_2 = 0.068$ (w = 0.0009).

5a: C₄₀H₂₅As₅Cr₂O₁₀, Molmasse 1144, Raumgruppe $P2_1/c$ (14), *a* 1220.7(6), *b* 1625(1), *c* 2183.1(9) pm, β 108.92(4)°, *V* 4097×10⁶ pm³, *Z* = 4; *d*_{ber} 1.85 g cm⁻³, μ (Mo- K_{α}) 48.4 cm⁻¹, *T* 238 K, 3373 unabhängige Reflexe (*I* > 2 σ), *R*₁ = 0.056, *R*₂ = 0.065.

5b: $C_{35}H_{25}As_5CrO_5$, Molmasse 952, Raumgruppe $P\overline{1}$ (2) *a* 1177(1), *b* 1227.0(7), *c* 1421(2) pm, *a* 107.69(7), *β* 111.93(7), γ 93.89(7)°, *V* 1775×10⁶pm³, *Z* = 2, *d*_{ber} 1.78 g cm⁻³, μ (Mo- K_{α}) 52.6 cm⁻¹, *T* 223 K, 2856 unabhängige Reflexe ($I > 2\sigma$), $R_1 = 0.052$, $R_2 = 0.081$.

5c: $C_{29}H_{20}As_4CrO_5$, Molmasse 800, Raumgruppe $P2_1/c$ (14), *a* 1042.7(5), *b* 2265.0(8), *c* 1887.0(9) pm, β 138.24(2)°, *V* 2968×10⁶ pm³, *Z* = 4, *d*_{ber} 1.79 g cm⁻³, μ (Mo- K_{α}) 51.1 cm⁻¹; *T* 223 K; 2334 unabhängige Reflexe ($I > 2\sigma$); $R_1 = 0.055$, $R_2 = 0.072$.

(b) Verbindung 2c: $C_{27}H_{16}As_2Cr_2O_{10}$, Molmasse 754, Raumgruppe $P\overline{4}$ (81); a = b 1202.0(6), c 955.6(6) pm; V 1381(1)×10⁶ pm³; Z = 2; d_{ber} 1.81 g cm⁻³; μ (Mo- K_a) 33.90 cm⁻¹; T 233 K; 1677 unabhängige Reflexe ($I > 2\sigma$); Die Struktur konnte in der Raumgruppe $P\overline{4}$ bis zu $R_1 = 0.06$ verfeinert werden. Die Grobstruktur von 2c ist damit zweifelsfrei gesichert. Zur Lösung mussten mehrere Split-Atome eingesetzt werden, so dass die Lösung kristallographisch nicht ganz befriedigend ist. Die Daten wurden daher nicht hinterlegt.

- 4 (a) G. Huttner, H. Lang, Z. Naturforsch., 41b (1986) 473. (b) G. Huttner, H.-D. Müller, V. Bejenke und O. Orama, Z. Naturforsch., B, 31 (1976) 1166.
- 5 G. Huttner, H.G. Schmid und H. Lorenz, Chem. Ber., 109 (1976) 3741.
- 6 (a) U. Weber, L. Zsolnai und G. Huttner, Z. Naturforsch., B, 40 (1985) 1430. (b) G. Huttner, P. Friedrich, H. Willenberg und H.-D. Müller, Angew. Chem., 89 (1977) 268; Angew. Chem. Int. Ed. Engl., 16 (1977) 260.
- 7 L.-R. Frank, I. Jibril, L. Zsolnai und G. Huttner, J. Organomet. Chem., 336 (1987) 337.
- 8 (a) A.L. Rheingold, M.E. Fountain und A.J. DiMaio, J. Am. Chem. Soc., 109 (1987) 141. (b) A.L. Rheingold und A.J. DiMiao, Organometallics, 5 (1986) 393. (c) K.F. Tebbe und M. Feher, Z. Naturforsch., B, 39 (1984) 37. (d) A.L. Rheingold, Homoatomic Rings, Chains and Macromolecules of Main Group Elements, Elsevier, Amsterdam, 1977. (e) A.L. Rheingold und M.R. Churchill, J. Organomet. Chem., 243 (1983) 165. (f) P.S. Elmes, B.O. West und J. Trotter, J. Organomet. Chem., 32 (1971) 365.
- 9 (a) W. Strohmeier, Angew. Chem 76 (1964) 873, Angew. Chem. Int. Ed. Engl., 3 (1964) 720. (b) J. v. Seyerl, Dissertationsarbeit-TU München, 1979, und dort zit. Lit.